Aurelis

Azure AI Integration API

Overview

The Azure AI Integration API provides seamless integration with Microsoft Azure AI services, including Azure OpenAI, Azure Cognitive Services, and Azure Machine Learning for enhanced code analysis, generation, and AI-powered development workflows.

Endpoints

Azure OpenAI Integration

POST /api/v1/azure-ai/openai/configure

Configures Azure OpenAI service integration for code generation and analysis.

Request Body

{
  "endpoint": "https://your-resource.openai.azure.com/",
  "api_key": "your_azure_openai_api_key",
  "api_version": "2024-02-15-preview",
  "deployments": [
    {
      "name": "gpt-4",
      "model": "gpt-4",
      "deployment_id": "gpt-4-deployment",
      "capabilities": ["code_generation", "code_analysis", "documentation"]
    },
    {
      "name": "gpt-35-turbo",
      "model": "gpt-35-turbo",
      "deployment_id": "gpt-35-deployment",
      "capabilities": ["code_completion", "quick_analysis"]
    }
  ],
  "default_deployment": "gpt-4",
  "rate_limits": {
    "requests_per_minute": 120,
    "tokens_per_minute": 120000
  }
}

Response

{
  "success": true,
  "configuration_id": "azure_openai_12345",
  "endpoint": "https://your-resource.openai.azure.com/",
  "deployments_configured": 2,
  "status": "active",
  "last_tested": "2025-06-17T10:30:00Z",
  "test_results": {
    "connection": "successful",
    "authentication": "valid",
    "deployments": {
      "gpt-4": "available",
      "gpt-35-turbo": "available"
    }
  }
}

Code Generation with Azure OpenAI

POST /api/v1/azure-ai/openai/generate

Generates code using Azure OpenAI models.

Request Body

{
  "deployment": "gpt-4",
  "prompt": "Create a Python function that validates email addresses",
  "language": "python",
  "context": {
    "existing_code": "import re\n\n# Existing validation functions",
    "requirements": ["RFC 5322 compliance", "return boolean"],
    "style_guide": "PEP 8"
  },
  "parameters": {
    "temperature": 0.3,
    "max_tokens": 1000,
    "top_p": 0.95,
    "frequency_penalty": 0.0,
    "presence_penalty": 0.0
  }
}

Response

{
  "success": true,
  "generation_id": "gen_67890",
  "deployment_used": "gpt-4",
  "generated_code": "def validate_email(email: str) -> bool:\n    \"\"\"\n    Validates an email address according to RFC 5322.\n    \n    Args:\n        email (str): The email address to validate\n        \n    Returns:\n        bool: True if email is valid, False otherwise\n    \"\"\"\n    pattern = r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]{2,}$'\n    return re.match(pattern, email) is not None",
  "metadata": {
    "tokens_used": 156,
    "processing_time_ms": 1250,
    "model_version": "gpt-4-0613",
    "finish_reason": "stop"
  },
  "quality_metrics": {
    "syntax_valid": true,
    "style_compliance": 95,
    "security_score": 100,
    "performance_rating": "good"
  }
}

Azure Cognitive Services Integration

POST /api/v1/azure-ai/cognitive/configure

Configures Azure Cognitive Services for enhanced code analysis.

Request Body

{
  "services": {
    "text_analytics": {
      "endpoint": "https://your-resource.cognitiveservices.azure.com/",
      "api_key": "your_text_analytics_key",
      "enabled": true
    },
    "translator": {
      "endpoint": "https://api.cognitive.microsofttranslator.com/",
      "api_key": "your_translator_key",
      "enabled": true
    },
    "speech": {
      "endpoint": "https://your-region.stt.speech.microsoft.com/",
      "api_key": "your_speech_key",
      "enabled": false
    }
  },
  "default_language": "en-US",
  "fallback_language": "en"
}

Response

{
  "success": true,
  "configuration_id": "azure_cognitive_54321",
  "services_configured": 2,
  "services_active": ["text_analytics", "translator"],
  "status": "active",
  "last_tested": "2025-06-17T10:30:00Z"
}

Sentiment Analysis for Code Comments

POST /api/v1/azure-ai/cognitive/sentiment

Analyzes sentiment in code comments and documentation.

Request Body

{
  "texts": [
    "# TODO: This is a terrible hack that needs to be fixed",
    "# Excellent implementation of the algorithm",
    "# This function works but could be optimized"
  ],
  "language": "en",
  "include_confidence": true
}

Response

{
  "success": true,
  "results": [
    {
      "text": "# TODO: This is a terrible hack that needs to be fixed",
      "sentiment": "negative",
      "confidence_scores": {
        "positive": 0.05,
        "neutral": 0.10,
        "negative": 0.85
      },
      "analysis": {
        "issues_detected": ["technical_debt", "urgent_todo"],
        "priority": "high",
        "suggestion": "Consider prioritizing this refactoring task"
      }
    },
    {
      "text": "# Excellent implementation of the algorithm",
      "sentiment": "positive",
      "confidence_scores": {
        "positive": 0.92,
        "neutral": 0.06,
        "negative": 0.02
      },
      "analysis": {
        "issues_detected": [],
        "priority": "low",
        "suggestion": "Well-documented code"
      }
    }
  ]
}

Code Translation

POST /api/v1/azure-ai/cognitive/translate

Translates code comments and documentation between languages.

Request Body

{
  "texts": [
    "# Cette fonction valide les adresses email",
    "# 这个函数验证电子邮件地址"
  ],
  "source_language": "auto",
  "target_language": "en",
  "preserve_formatting": true
}

Response

{
  "success": true,
  "translations": [
    {
      "original_text": "# Cette fonction valide les adresses email",
      "translated_text": "# This function validates email addresses",
      "detected_language": "fr",
      "confidence": 0.98
    },
    {
      "original_text": "# 这个函数验证电子邮件地址",
      "translated_text": "# This function validates email addresses",
      "detected_language": "zh-Hans",
      "confidence": 0.95
    }
  ]
}

Azure Machine Learning Integration

POST /api/v1/azure-ai/ml/configure

Configures Azure Machine Learning workspace for custom model deployment.

Request Body

{
  "workspace_name": "aurelis-ml-workspace",
  "resource_group": "aurelis-resources",
  "subscription_id": "your_subscription_id",
  "region": "eastus",
  "authentication": {
    "type": "service_principal",
    "tenant_id": "your_tenant_id",
    "client_id": "your_client_id",
    "client_secret": "your_client_secret"
  },
  "compute_targets": [
    {
      "name": "code-analysis-cluster",
      "type": "AmlCompute",
      "vm_size": "Standard_D3_v2",
      "min_nodes": 0,
      "max_nodes": 4
    }
  ]
}

Response

{
  "success": true,
  "workspace_id": "aml_workspace_99999",
  "workspace_url": "https://ml.azure.com/workspaces/workspace-id",
  "status": "configured",
  "compute_targets_created": 1,
  "available_models": []
}

Custom Model Deployment

POST /api/v1/azure-ai/ml/deploy

Deploys a custom AI model for specialized code analysis.

Request Body

{
  "model_name": "code-quality-analyzer",
  "model_version": "1.0.0",
  "model_file": "model.pkl",
  "environment": {
    "name": "aurelis-env",
    "python_version": "3.8",
    "dependencies": [
      "scikit-learn==1.0.2",
      "pandas==1.3.0",
      "numpy==1.21.0"
    ]
  },
  "deployment_config": {
    "instance_type": "Standard_DS2_v2",
    "instance_count": 1,
    "endpoint_name": "code-quality-endpoint"
  }
}

Response

{
  "success": true,
  "deployment_id": "deploy_88888",
  "endpoint_url": "https://code-quality-endpoint.eastus.inference.ml.azure.com/score",
  "status": "deploying",
  "estimated_completion": "2025-06-17T10:45:00Z",
  "swagger_url": "https://code-quality-endpoint.eastus.inference.ml.azure.com/swagger.json"
}

Model Inference

POST /api/v1/azure-ai/ml/predict

Makes predictions using deployed Azure ML models.

Request Body

{
  "endpoint_name": "code-quality-endpoint",
  "input_data": {
    "code_snippet": "def calculate_average(numbers):\n    return sum(numbers) / len(numbers)",
    "language": "python",
    "context": {
      "file_type": "function",
      "complexity": "low",
      "line_count": 2
    }
  }
}

Response

{
  "success": true,
  "prediction_id": "pred_77777",
  "predictions": {
    "quality_score": 8.5,
    "maintainability": 9.0,
    "readability": 8.8,
    "performance": 7.5,
    "security": 9.2,
    "issues": [
      {
        "type": "potential_bug",
        "severity": "medium",
        "description": "Division by zero possible if empty list provided",
        "suggestion": "Add input validation for empty lists"
      }
    ]
  },
  "confidence": 0.92,
  "processing_time_ms": 150
}

Azure Content Safety

POST /api/v1/azure-ai/safety/analyze

Analyzes code and comments for potentially harmful content.

Request Body

{
  "content": [
    "# This password validation is terrible",
    "def hack_system():",
    "# Regular validation function"
  ],
  "categories": ["hate", "violence", "sexual", "self_harm"],
  "severity_threshold": "low"
}

Response

{
  "success": true,
  "results": [
    {
      "content": "# This password validation is terrible",
      "flagged": false,
      "categories": {
        "hate": {"severity": 0, "flagged": false},
        "violence": {"severity": 0, "flagged": false},
        "sexual": {"severity": 0, "flagged": false},
        "self_harm": {"severity": 0, "flagged": false}
      }
    },
    {
      "content": "def hack_system():",
      "flagged": true,
      "categories": {
        "hate": {"severity": 0, "flagged": false},
        "violence": {"severity": 2, "flagged": true},
        "sexual": {"severity": 0, "flagged": false},
        "self_harm": {"severity": 0, "flagged": false}
      },
      "recommendation": "Review function name for potential security implications"
    }
  ]
}

Usage Analytics

GET /api/v1/azure-ai/analytics

Retrieves usage analytics for Azure AI services.

Response

{
  "success": true,
  "period": "last_30_days",
  "services": {
    "azure_openai": {
      "requests": 15420,
      "tokens_consumed": 2450000,
      "average_response_time_ms": 1250,
      "cost_usd": 245.50,
      "deployments": {
        "gpt-4": {
          "requests": 8520,
          "tokens": 1800000,
          "cost_usd": 180.00
        },
        "gpt-35-turbo": {
          "requests": 6900,
          "tokens": 650000,
          "cost_usd": 65.50
        }
      }
    },
    "cognitive_services": {
      "text_analytics": {
        "requests": 5420,
        "cost_usd": 54.20
      },
      "translator": {
        "characters_translated": 125000,
        "cost_usd": 12.50
      }
    },
    "machine_learning": {
      "inference_requests": 2840,
      "compute_hours": 45.5,
      "cost_usd": 68.25
    }
  },
  "total_cost_usd": 380.45,
  "rate_limit_hits": 12,
  "error_rate": 0.02
}

Authentication

Service Principal Authentication

Recommended for production environments:

{
  "tenant_id": "your_tenant_id",
  "client_id": "your_client_id",
  "client_secret": "your_client_secret"
}

API Key Authentication

For Azure OpenAI and Cognitive Services:

{
  "api_key": "your_service_api_key",
  "endpoint": "https://your-resource.cognitiveservices.azure.com/"
}

Error Handling

Common Error Codes

Error Response Format

{
  "success": false,
  "error": {
    "code": "AZURE_QUOTA_EXCEEDED",
    "message": "Azure OpenAI quota exceeded for this deployment",
    "details": {
      "service": "azure_openai",
      "deployment": "gpt-4",
      "quota_type": "tokens_per_minute",
      "limit": 120000,
      "used": 120000,
      "reset_time": "2025-06-17T10:35:00Z"
    }
  }
}

Rate Limiting

Rate limits vary by Azure service:

Examples

Configure Azure OpenAI

curl -X POST "https://api.aurelis.dev/v1/azure-ai/openai/configure" \
  -H "Authorization: Bearer YOUR_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "endpoint": "https://your-resource.openai.azure.com/",
    "api_key": "your_azure_openai_key",
    "deployments": [
      {
        "name": "gpt-4",
        "model": "gpt-4",
        "deployment_id": "gpt-4-deployment"
      }
    ]
  }'

Generate Code

curl -X POST "https://api.aurelis.dev/v1/azure-ai/openai/generate" \
  -H "Authorization: Bearer YOUR_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "deployment": "gpt-4",
    "prompt": "Create a Python function for email validation",
    "language": "python",
    "parameters": {"temperature": 0.3}
  }'

Analyze Sentiment

curl -X POST "https://api.aurelis.dev/v1/azure-ai/cognitive/sentiment" \
  -H "Authorization: Bearer YOUR_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "texts": ["# This code needs improvement"],
    "language": "en"
  }'

Integration

Python SDK

from aurelis import AzureAIIntegration

azure_ai = AzureAIIntegration(api_key="your_api_key")

# Configure Azure OpenAI
azure_ai.configure_openai(
    endpoint="https://your-resource.openai.azure.com/",
    api_key="azure_openai_key",
    deployments=[
        {
            "name": "gpt-4",
            "model": "gpt-4",
            "deployment_id": "gpt-4-deployment"
        }
    ]
)

# Generate code
result = azure_ai.generate_code(
    deployment="gpt-4",
    prompt="Create a function for email validation",
    language="python"
)

# Analyze sentiment
sentiment = azure_ai.analyze_sentiment([
    "# This code is excellent",
    "# TODO: Fix this terrible bug"
])

CLI Integration

# Configure Azure OpenAI
aurelis azure-ai configure openai \
  --endpoint https://your-resource.openai.azure.com/ \
  --api-key your_key

# Generate code
aurelis azure-ai generate \
  --deployment gpt-4 \
  --prompt "Create email validation function" \
  --language python

# Analyze sentiment
aurelis azure-ai sentiment "This code needs improvement"

Best Practices

  1. Security: Store Azure credentials securely and rotate regularly
  2. Cost Management: Monitor usage and set appropriate quotas
  3. Performance: Cache results when appropriate to reduce API calls
  4. Error Handling: Implement robust retry logic for transient failures
  5. Monitoring: Track usage, costs, and performance metrics
  6. Compliance: Ensure data handling complies with your organization’s policies

Azure Regions

Supported Azure regions for optimal performance:

Limitations

Compliance

Azure AI services support various compliance standards:

Support

For Azure AI integration issues: