Aurelis

System Overview

Aurelis is an enterprise-grade AI code assistant built exclusively for GitHub models via Azure AI Inference.

High-Level Architecture

┌─────────────────────────────────────────────────────────────┐
│                         User Layer                         │
├─────────────────────────────────────────────────────────────┤
│  CLI Commands  │  Interactive Shell  │  Future: IDE Plugin │
└─────────────────┬───────────────────────────────────────────┘
                  │
┌─────────────────▼───────────────────────────────────────────┐
│                    Application Layer                       │
├─────────────────────────────────────────────────────────────┤
│           Model Orchestrator (Core Engine)                 │
│  ┌─────────────┐ ┌─────────────┐ ┌─────────────┐           │
│  │    Task     │ │   Model     │ │   Cache     │           │
│  │   Router    │ │  Manager    │ │  Manager    │           │
│  └─────────────┘ └─────────────┘ └─────────────┘           │
└─────────────────┬───────────────────────────────────────────┘
                  │
┌─────────────────▼───────────────────────────────────────────┐
│                   Integration Layer                        │
├─────────────────────────────────────────────────────────────┤
│                Azure AI Inference API                      │
│  ┌─────────────┐ ┌─────────────┐ ┌─────────────┐           │
│  │   Codestral │ │    GPT-4o   │ │   Cohere    │           │
│  │    2501     │ │    Models   │ │  Command-R  │           │
│  └─────────────┘ └─────────────┘ └─────────────┘           │
│  ┌─────────────┐ ┌─────────────┐                           │
│  │    Meta     │ │   Mistral   │                           │
│  │ Llama 3.1   │ │   Models    │                           │
│  └─────────────┘ └─────────────┘                           │
└─────────────────┬───────────────────────────────────────────┘
                  │
┌─────────────────▼───────────────────────────────────────────┐
│                  Infrastructure Layer                      │
├─────────────────────────────────────────────────────────────┤
│  Configuration  │   Security    │   Logging   │   Monitoring│
│   Management    │  & Auth       │  & Metrics  │  & Health   │
└─────────────────────────────────────────────────────────────┘

Core Components

1. Model Orchestrator

Purpose: Central engine for GitHub model interaction Responsibilities:

Key Features:

2. Task Router

Purpose: Intelligent model selection based on request context Responsibilities:

Routing Logic:

Code Generation     Codestral-2501 (Primary)  GPT-4o (Fallback)
Documentation      Cohere Command-R  GPT-4o-mini
Complex Reasoning  GPT-4o  Meta Llama 405B
Performance Opt    Codestral-2501  Meta Llama 70B

3. Cache Manager

Purpose: Optimize performance through intelligent response caching Responsibilities:

Cache Strategy:

4. Configuration System

Purpose: Centralized configuration management Responsibilities:

Configuration Sources (in priority order):

  1. Command-line arguments
  2. Environment variables
  3. Project configuration file (.aurelis.yaml)
  4. User configuration file (~/.aurelis/config.yaml)
  5. System defaults

5. Security Manager

Purpose: Handle authentication and secure credential storage Responsibilities:

Security Features:

Data Flow

Request Processing Flow

1. User Input (CLI/Shell)
   │
   ▼
2. Request Validation
   │
   ▼
3. Cache Lookup
   │
   ├── Cache Hit ──────────────┐
   │                           │
   ▼                           │
4. Task Analysis               │
   │                           │
   ▼                           │
5. Model Selection             │
   │                           │
   ▼                           │
6. API Request (GitHub Models) │
   │                           │
   ▼                           │
7. Response Processing         │
   │                           │
   ▼                           │
8. Cache Storage               │
   │                           │
   ▼                           ▼
9. Response to User ←──────────┘

Configuration Loading Flow

1. Application Start
   │
   ▼
2. Load System Defaults
   │
   ▼
3. Load User Config (~/.aurelis/config.yaml)
   │
   ▼
4. Load Project Config (.aurelis.yaml)
   │
   ▼
5. Apply Environment Variables
   │
   ▼
6. Apply CLI Arguments
   │
   ▼
7. Validate Configuration
   │
   ▼
8. Initialize Components

Authentication Architecture

GitHub Token Flow

1. Token Discovery
   ├── Environment Variable (GITHUB_TOKEN)
   ├── Configuration File
   └── System Keyring
   │
   ▼
2. Token Validation
   ├── Format Validation
   ├── Permission Check
   └── API Test Call
   │
   ▼
3. Secure Storage
   ├── Encrypt Token
   ├── Store in Keyring
   └── Clear Memory
   │
   ▼
4. API Authentication
   ├── Bearer Token Header
   ├── Request Signing
   └── Response Validation

Error Handling Strategy

Error Categories

  1. Configuration Errors
    • Missing or invalid configuration
    • Authentication failures
    • Permission issues
  2. Model Errors
    • Model unavailable or overloaded
    • Rate limit exceeded
    • API timeout or connectivity issues
  3. Processing Errors
    • Invalid input format
    • Parsing failures
    • Resource exhaustion

Recovery Mechanisms

  1. Automatic Retry
    • Exponential backoff for transient failures
    • Maximum retry count limits
    • Different strategies per error type
  2. Fallback Models
    • Primary model failure triggers fallback
    • Graceful degradation of capabilities
    • User notification of model switching
  3. Circuit Breaker
    • Detect persistent failures
    • Temporarily disable failing components
    • Automatic recovery testing

Performance Characteristics

Latency Targets

Throughput Capabilities

Resource Requirements

Monitoring & Observability

Metrics Collection

Logging Strategy

Health Checks

Scalability Considerations

Current Limitations

Future Scaling Options

Integration Points

Current Integrations

Future Integration Opportunities

Quality Attributes

Reliability

Security

Performance

Maintainability

Usability

See Also