Enterprise-grade installation guide for production environments
# Clone the repository
git clone https://github.com/kanopus/aurelis.git
cd aurelis
# Create virtual environment
python -m venv .venv
# Activate virtual environment
# Windows:
.venv\Scripts\activate
# macOS/Linux:
source .venv/bin/activate
# Install dependencies
pip install -r requirements.txt
# Install Aurelis in development mode
pip install -e .
# Install from PyPI (when available)
pip install aurelis-cli
# Or install from wheel
pip install aurelis-cli-1.0.0-py3-none-any.whl
# Initialize with default settings
aurelis init
# Initialize with custom config path
aurelis init --config /path/to/config.yaml
# Force overwrite existing configuration
aurelius init --force
# Windows (PowerShell)
$env:GITHUB_TOKEN="ghp_your_token_here"
# Windows (Command Prompt)
set GITHUB_TOKEN=ghp_your_token_here
# macOS/Linux (Bash/Zsh)
export GITHUB_TOKEN="ghp_your_token_here"
# Make permanent by adding to your shell profile
echo 'export GITHUB_TOKEN="ghp_your_token_here"' >> ~/.bashrc
# .aurelis.yaml
github_token: "ghp_your_token_here" # Not recommended for production
# Better: Use environment variable reference
github_token: "${GITHUB_TOKEN}"
# Check Aurelis version
aurelis --version
# Verify GitHub models access
aurelis models
# Test configuration
aurelis status
read:user
- Read user profile informationread:org
- Read organization membership (if applicable)# Store in secure environment variables
export GITHUB_TOKEN="ghp_your_token_here"
# Use in your shell
aurelis generate "Create a REST API"
# β
Good: Environment variable reference
github_token: "${GITHUB_TOKEN}"
# β Bad: Hardcoded token
github_token: "ghp_your_token_here"
# Enterprise configuration with secure token storage
security:
token_storage: "environment" # or "keyring", "vault"
audit_logging: true
secure_config: true
your-project/
βββ .aurelis.yaml # Aurelis configuration
βββ .env # Environment variables (optional)
βββ .gitignore # Include .aurelis/ in gitignore
βββ src/ # Your source code
βββ tests/ # Your tests
βββ docs/ # Project documentation
βββ .aurelis/ # Aurelis working directory
βββ sessions/ # Shell sessions
βββ cache/ # Model response cache
βββ logs/ # Audit and error logs
# Aurelis working directory
.aurelis/
# Environment files
.env
.env.local
# Sensitive configuration
config/secrets.yaml
# 1. Check version and basic functionality
aurelis --version
aurelis --help
# 2. Verify GitHub token and model access
aurelis models
aurelis models test
# 3. Test basic AI functionality
aurelis generate "Hello World function in Python"
# 4. Start interactive shell
aurelis shell
# System status check
aurelis status
# GitHub API connectivity
aurelis models health
# Configuration validation
aurelis config show
1. Python Version Incompatibility
# Check Python version
python --version
python3 --version
# Use specific Python version
python3.11 -m pip install aurelis-cli
2. GitHub Token Issues
# Verify token format (should start with 'ghp_')
echo $GITHUB_TOKEN
# Test token with curl
curl -H "Authorization: token $GITHUB_TOKEN" https://api.github.com/user
3. Network/Proxy Issues
# Configure pip for proxy
pip install --proxy https://proxy.company.com:8080 aurelis
# Configure git for proxy
git config --global http.proxy https://proxy.company.com:8080
4. Permission Issues
# Use user installation
pip install --user aurelis
# Fix permissions (Linux/macOS)
sudo chown -R $USER:$USER ~/.local
# enterprise.aurelis.yaml
github_token: "${GITHUB_TOKEN}"
models:
primary: "gpt-4o"
fallback: "gpt-4o-mini"
enterprise_routing: true
security:
audit_logging: true
secure_token_storage: true
compliance_mode: true
cache:
enabled: true
shared_cache: true
ttl: 7200 # 2 hours
logging:
level: "INFO"
audit_file: "/var/log/aurelis/audit.log"
error_file: "/var/log/aurelis/error.log"
enterprise:
team_name: "Engineering"
cost_tracking: true
usage_analytics: true
# System-wide installation
sudo pip install aurelis-cli
# Create shared configuration
sudo mkdir -p /etc/aurelis
sudo cp enterprise.aurelis.yaml /etc/aurelis/config.yaml
# Set appropriate permissions
sudo chmod 644 /etc/aurelis/config.yaml
# Create systemd service (Linux)
sudo tee /etc/systemd/system/aurelis.service << EOF
[Unit]
Description=Aurelis AI Code Assistant
After=network.target
[Service]
Type=simple
User=aurelis
Group=aurelis
EnvironmentFile=/etc/aurelis/environment
ExecStart=/usr/local/bin/aurelis server
Restart=always
[Install]
WantedBy=multi-user.target
EOF
# Enable and start service
sudo systemctl enable aurelis
sudo systemctl start aurelis
After successful installation:
aurelis shell
for interactive developmentπ Welcome to Aurelis - Your Enterprise AI Code Assistant!