Aurelis

Security Model Architecture

Enterprise-grade security architecture for Aurelis GitHub Models integration

This document outlines the comprehensive security model implemented in Aurelis, covering authentication, authorization, data protection, compliance, and threat mitigation strategies for safe AI model interactions.

πŸ“‹ Table of Contents

  1. Security Overview
  2. Authentication Security
  3. Data Protection
  4. Network Security
  5. Access Control
  6. Audit & Compliance
  7. Threat Mitigation
  8. Encryption & Key Management
  9. Incident Response
  10. Security Monitoring

πŸ” Security Overview

Security Architecture Principles

Aurelis implements a defense-in-depth security model with multiple layers of protection:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                    Application Layer                        β”‚
β”‚  β”œβ”€β”€ Input Validation & Sanitization                       β”‚
β”‚  β”œβ”€β”€ Business Logic Security                               β”‚
β”‚  β”œβ”€β”€ Session Management                                    β”‚
β”‚  └── Output Encoding                                       β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                   Authentication Layer                      β”‚
β”‚  β”œβ”€β”€ Token Validation                                      β”‚
β”‚  β”œβ”€β”€ Multi-Factor Authentication                           β”‚
β”‚  β”œβ”€β”€ Session Security                                      β”‚
β”‚  └── Identity Verification                                 β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                   Authorization Layer                       β”‚
β”‚  β”œβ”€β”€ Role-Based Access Control (RBAC)                     β”‚
β”‚  β”œβ”€β”€ Resource-Level Permissions                           β”‚
β”‚  β”œβ”€β”€ API Rate Limiting                                    β”‚
β”‚  └── Usage Quotas                                         β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                    Transport Layer                          β”‚
β”‚  β”œβ”€β”€ TLS 1.3 Encryption                                   β”‚
β”‚  β”œβ”€β”€ Certificate Pinning                                  β”‚
β”‚  β”œβ”€β”€ Request/Response Integrity                           β”‚
β”‚  └── Man-in-the-Middle Protection                         β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                  Infrastructure Layer                       β”‚
β”‚  β”œβ”€β”€ Network Segmentation                                 β”‚
β”‚  β”œβ”€β”€ Firewall Protection                                  β”‚
β”‚  β”œβ”€β”€ DDoS Mitigation                                      β”‚
β”‚  └── Intrusion Detection                                  β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Security Compliance Standards

Aurelis adheres to multiple security and compliance frameworks:

πŸ”‘ Authentication Security

GitHub Token Security Model

Token Lifecycle Management

class SecureTokenManager:
    """Enterprise-grade GitHub token management."""
    
    def __init__(self):
        self.encryption_key = self._derive_encryption_key()
        self.token_store = SecureTokenStore()
        self.audit_logger = get_audit_logger()
        
    def store_token(self, token: str, user_context: Dict[str, Any]) -> str:
        """Securely store GitHub token with encryption."""
        
        # Validate token format and permissions
        if not self._validate_token_format(token):
            raise SecurityError("Invalid token format")
        
        # Encrypt token before storage
        encrypted_token = self._encrypt_token(token)
        
        # Store with metadata
        token_id = self._generate_token_id()
        
        storage_record = {
            "token_id": token_id,
            "encrypted_token": encrypted_token,
            "created_at": datetime.utcnow(),
            "user_id": user_context.get("user_id"),
            "organization": user_context.get("organization"),
            "permissions": self._extract_token_permissions(token),
            "last_used": None,
            "usage_count": 0
        }
        
        self.token_store.store(token_id, storage_record)
        
        # Audit log
        self.audit_logger.log_security_event(
            event_type="token_stored",
            severity="info",
            description="GitHub token securely stored",
            context={"token_id": token_id, "user_id": user_context.get("user_id")}
        )
        
        return token_id
    
    def retrieve_token(self, token_id: str, user_context: Dict[str, Any]) -> str:
        """Securely retrieve and decrypt GitHub token."""
        
        # Verify user authorization
        if not self._authorize_token_access(token_id, user_context):
            raise SecurityError("Unauthorized token access attempt")
        
        record = self.token_store.retrieve(token_id)
        if not record:
            raise SecurityError("Token not found")
        
        # Decrypt token
        decrypted_token = self._decrypt_token(record["encrypted_token"])
        
        # Update usage tracking
        self._update_token_usage(token_id)
        
        # Audit log
        self.audit_logger.log_security_event(
            event_type="token_retrieved",
            severity="info",
            description="GitHub token accessed",
            context={"token_id": token_id, "user_id": user_context.get("user_id")}
        )
        
        return decrypted_token
    
    def rotate_token(self, token_id: str, new_token: str, user_context: Dict[str, Any]):
        """Rotate GitHub token with secure transition."""
        
        # Validate new token
        if not self._validate_token_format(new_token):
            raise SecurityError("Invalid new token format")
        
        # Store new token
        new_token_id = self.store_token(new_token, user_context)
        
        # Mark old token for deprecation
        self._deprecate_token(token_id, new_token_id)
        
        # Audit log
        self.audit_logger.log_security_event(
            event_type="token_rotated",
            severity="info",
            description="GitHub token rotated",
            context={
                "old_token_id": token_id,
                "new_token_id": new_token_id,
                "user_id": user_context.get("user_id")
            }
        )
        
        return new_token_id

Token Validation and Permissions

class TokenValidator:
    """Validate GitHub tokens and their permissions."""
    
    def __init__(self):
        self.required_scopes = {
            "read:user",  # Basic user information
            "read:org"    # Organization membership (if applicable)
        }
        self.github_api = GitHubAPIClient()
        
    async def validate_token(self, token: str) -> TokenValidationResult:
        """Comprehensive token validation."""
        
        validation_result = TokenValidationResult()
        
        try:
            # 1. Format validation
            if not self._validate_token_format(token):
                validation_result.add_error("Invalid token format")
                return validation_result
            
            # 2. API connectivity test
            user_info = await self._test_api_connectivity(token)
            if not user_info:
                validation_result.add_error("Token authentication failed")
                return validation_result
            
            # 3. Scope validation
            token_scopes = await self._get_token_scopes(token)
            missing_scopes = self.required_scopes - set(token_scopes)
            
            if missing_scopes:
                validation_result.add_warning(f"Missing scopes: {missing_scopes}")
            
            # 4. Rate limit check
            rate_limit_info = await self._check_rate_limits(token)
            validation_result.rate_limit_info = rate_limit_info
            
            # 5. Model access verification
            model_access = await self._verify_model_access(token)
            if not model_access:
                validation_result.add_error("No access to GitHub Models")
                return validation_result
            
            validation_result.mark_valid()
            validation_result.user_info = user_info
            validation_result.token_scopes = token_scopes
            
        except Exception as e:
            validation_result.add_error(f"Validation error: {str(e)}")
        
        return validation_result
    
    async def _verify_model_access(self, token: str) -> bool:
        """Verify token has access to GitHub Models."""
        
        headers = {"Authorization": f"Bearer {token}"}
        
        try:
            async with aiohttp.ClientSession() as session:
                async with session.get(
                    "https://models.inference.ai.azure.com/models",
                    headers=headers,
                    timeout=aiohttp.ClientTimeout(total=10)
                ) as response:
                    return response.status == 200
        except Exception:
            return False

Multi-Factor Authentication

class MFAManager:
    """Multi-factor authentication for enhanced security."""
    
    def __init__(self):
        self.totp_manager = TOTPManager()
        self.backup_codes = BackupCodeManager()
        
    def setup_mfa(self, user_id: str) -> MFASetupResult:
        """Set up MFA for user account."""
        
        # Generate TOTP secret
        totp_secret = self.totp_manager.generate_secret()
        
        # Generate backup codes
        backup_codes = self.backup_codes.generate_codes(user_id, count=10)
        
        # Store encrypted MFA data
        mfa_data = {
            "user_id": user_id,
            "totp_secret": self._encrypt_secret(totp_secret),
            "backup_codes": [self._hash_backup_code(code) for code in backup_codes],
            "enabled": False,  # Not enabled until first successful verification
            "created_at": datetime.utcnow()
        }
        
        self._store_mfa_data(user_id, mfa_data)
        
        return MFASetupResult(
            qr_code=self.totp_manager.generate_qr_code(totp_secret, user_id),
            backup_codes=backup_codes,
            secret=totp_secret
        )
    
    def verify_mfa(self, user_id: str, code: str) -> bool:
        """Verify MFA code."""
        
        mfa_data = self._get_mfa_data(user_id)
        if not mfa_data:
            return False
        
        # Try TOTP verification
        totp_secret = self._decrypt_secret(mfa_data["totp_secret"])
        if self.totp_manager.verify_code(totp_secret, code):
            self._record_successful_mfa(user_id, "totp")
            return True
        
        # Try backup code verification
        code_hash = self._hash_backup_code(code)
        if code_hash in mfa_data["backup_codes"]:
            # Remove used backup code
            self._remove_backup_code(user_id, code_hash)
            self._record_successful_mfa(user_id, "backup_code")
            return True
        
        # Record failed attempt
        self._record_failed_mfa(user_id)
        return False

πŸ›‘οΈ Data Protection

Data Classification and Handling

class DataClassificationManager:
    """Classify and handle data based on sensitivity levels."""
    
    def __init__(self):
        self.classification_rules = {
            "public": {
                "encryption_required": False,
                "audit_level": "basic",
                "retention_days": 365
            },
            "internal": {
                "encryption_required": True,
                "audit_level": "standard",
                "retention_days": 90
            },
            "confidential": {
                "encryption_required": True,
                "audit_level": "detailed",
                "retention_days": 30
            },
            "restricted": {
                "encryption_required": True,
                "audit_level": "comprehensive",
                "retention_days": 7
            }
        }
    
    def classify_data(self, data: Any, context: Dict[str, Any]) -> DataClassification:
        """Classify data based on content and context."""
        
        classification = DataClassification()
        
        # Analyze content for sensitive patterns
        if isinstance(data, str):
            sensitivity_score = self._analyze_content_sensitivity(data)
            classification.sensitivity_score = sensitivity_score
            
            if sensitivity_score >= 0.8:
                classification.level = "restricted"
            elif sensitivity_score >= 0.6:
                classification.level = "confidential"
            elif sensitivity_score >= 0.3:
                classification.level = "internal"
            else:
                classification.level = "public"
        
        # Consider context
        if context.get("contains_pii"):
            classification.level = max(classification.level, "confidential")
        
        if context.get("regulatory_data"):
            classification.level = "restricted"
        
        # Apply classification rules
        rules = self.classification_rules[classification.level]
        classification.encryption_required = rules["encryption_required"]
        classification.audit_level = rules["audit_level"]
        classification.retention_days = rules["retention_days"]
        
        return classification
    
    def _analyze_content_sensitivity(self, content: str) -> float:
        """Analyze content for sensitive information."""
        
        sensitive_patterns = [
            (r'\b\d{3}-\d{2}-\d{4}\b', 0.9),  # SSN
            (r'\b\d{4}[- ]?\d{4}[- ]?\d{4}[- ]?\d{4}\b', 0.8),  # Credit card
            (r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b', 0.3),  # Email
            (r'\b(?:password|secret|key|token)\s*[:=]\s*\S+', 0.9),  # Credentials
            (r'\b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\b', 0.2),  # IP address
        ]
        
        max_score = 0.0
        
        for pattern, score in sensitive_patterns:
            if re.search(pattern, content, re.IGNORECASE):
                max_score = max(max_score, score)
        
        return max_score

Encryption at Rest and in Transit

class EncryptionManager:
    """Manage encryption for data at rest and in transit."""
    
    def __init__(self):
        self.master_key = self._get_master_key()
        self.aes_cipher = AESCipher(self.master_key)
        self.rsa_manager = RSAKeyManager()
        
    def encrypt_sensitive_data(self, data: bytes, classification: DataClassification) -> EncryptedData:
        """Encrypt data based on classification level."""
        
        if not classification.encryption_required:
            return EncryptedData(data=data, encrypted=False)
        
        # Generate data encryption key (DEK)
        dek = self._generate_dek()
        
        # Encrypt data with DEK
        encrypted_data = self.aes_cipher.encrypt(data, dek)
        
        # Encrypt DEK with master key (envelope encryption)
        encrypted_dek = self.aes_cipher.encrypt(dek, self.master_key)
        
        return EncryptedData(
            data=encrypted_data,
            encrypted_key=encrypted_dek,
            algorithm="AES-256-GCM",
            key_version=self._get_key_version(),
            encrypted=True
        )
    
    def decrypt_sensitive_data(self, encrypted_data: EncryptedData) -> bytes:
        """Decrypt data using envelope encryption."""
        
        if not encrypted_data.encrypted:
            return encrypted_data.data
        
        # Decrypt DEK with master key
        dek = self.aes_cipher.decrypt(encrypted_data.encrypted_key, self.master_key)
        
        # Decrypt data with DEK
        decrypted_data = self.aes_cipher.decrypt(encrypted_data.data, dek)
        
        # Securely clear DEK from memory
        self._secure_clear(dek)
        
        return decrypted_data
    
    def setup_tls_configuration(self) -> TLSConfig:
        """Configure TLS for secure communication."""
        
        return TLSConfig(
            min_version="TLSv1.3",
            cipher_suites=[
                "TLS_AES_256_GCM_SHA384",
                "TLS_CHACHA20_POLY1305_SHA256",
                "TLS_AES_128_GCM_SHA256"
            ],
            certificate_pinning=True,
            hsts_enabled=True,
            ocsp_stapling=True
        )

🌐 Network Security

Secure API Communication

class SecureAPIClient:
    """Secure API client with comprehensive protection."""
    
    def __init__(self):
        self.session = None
        self.rate_limiter = RateLimiter()
        self.request_signer = RequestSigner()
        
    async def create_secure_session(self) -> aiohttp.ClientSession:
        """Create secure HTTP session with protection."""
        
        # TLS configuration
        ssl_context = ssl.create_default_context()
        ssl_context.minimum_version = ssl.TLSVersion.TLSv1_3
        ssl_context.set_ciphers('ECDHE+AESGCM:ECDHE+CHACHA20:DHE+AESGCM:DHE+CHACHA20:!aNULL:!MD5:!DSS')
        
        # Certificate pinning
        ssl_context.check_hostname = True
        ssl_context.verify_mode = ssl.CERT_REQUIRED
        
        # Create connector with security settings
        connector = aiohttp.TCPConnector(
            ssl=ssl_context,
            limit=20,  # Limit concurrent connections
            limit_per_host=5,
            ttl_dns_cache=300,
            use_dns_cache=True,
            keepalive_timeout=30,
            enable_cleanup_closed=True
        )
        
        # Security headers
        headers = {
            "User-Agent": "Aurelis/2.0.0 Security-Enhanced",
            "Accept": "application/json",
            "Accept-Encoding": "gzip, deflate",
            "X-Content-Type-Options": "nosniff",
            "X-Frame-Options": "DENY",
            "X-XSS-Protection": "1; mode=block",
            "Strict-Transport-Security": "max-age=31536000; includeSubDomains"
        }
        
        # Timeout configuration
        timeout = aiohttp.ClientTimeout(
            total=60,
            connect=10,
            sock_read=45
        )
        
        session = aiohttp.ClientSession(
            connector=connector,
            timeout=timeout,
            headers=headers,
            trace_configs=[self._create_trace_config()]
        )
        
        return session
    
    async def secure_request(
        self,
        method: str,
        url: str,
        data: Optional[Dict[str, Any]] = None,
        headers: Optional[Dict[str, str]] = None
    ) -> aiohttp.ClientResponse:
        """Make secure API request with protection."""
        
        # Rate limiting
        await self.rate_limiter.acquire()
        
        # Request preparation
        prepared_headers = self._prepare_security_headers(headers or {})
        
        # Request signing
        if data:
            signature = self.request_signer.sign_request(method, url, data)
            prepared_headers["X-Request-Signature"] = signature
        
        # Input validation
        self._validate_request_input(url, data)
        
        session = await self.create_secure_session()
        
        try:
            async with session.request(
                method=method,
                url=url,
                json=data,
                headers=prepared_headers
            ) as response:
                
                # Response validation
                await self._validate_response(response)
                
                return response
                
        finally:
            await session.close()

Request/Response Validation

class RequestValidator:
    """Validate API requests and responses for security."""
    
    def __init__(self):
        self.content_limits = {
            "max_prompt_length": 50000,
            "max_system_prompt_length": 10000,
            "max_metadata_size": 1024
        }
        
        self.dangerous_patterns = [
            r'<script\b[^<]*(?:(?!<\/script>)<[^<]*)*<\/script>',  # Script injection
            r'javascript:',  # JavaScript URLs
            r'data:text\/html',  # Data URLs
            r'vbscript:',  # VBScript URLs
            r'\bon\w+\s*=',  # Event handlers
        ]
    
    def validate_model_request(self, request: ModelRequest) -> ValidationResult:
        """Validate model request for security issues."""
        
        result = ValidationResult()
        
        # Length validation
        if len(request.prompt) > self.content_limits["max_prompt_length"]:
            result.add_error("Prompt exceeds maximum length")
        
        if request.system_prompt and len(request.system_prompt) > self.content_limits["max_system_prompt_length"]:
            result.add_error("System prompt exceeds maximum length")
        
        # Content validation
        if self._contains_dangerous_content(request.prompt):
            result.add_error("Prompt contains potentially dangerous content")
        
        if request.system_prompt and self._contains_dangerous_content(request.system_prompt):
            result.add_error("System prompt contains potentially dangerous content")
        
        # Metadata validation
        if request.metadata:
            metadata_size = len(json.dumps(request.metadata))
            if metadata_size > self.content_limits["max_metadata_size"]:
                result.add_error("Metadata exceeds maximum size")
        
        # Parameter validation
        if request.temperature < 0 or request.temperature > 2:
            result.add_error("Temperature out of valid range")
        
        if request.max_tokens is not None and (request.max_tokens < 1 or request.max_tokens > 100000):
            result.add_error("max_tokens out of valid range")
        
        return result
    
    def _contains_dangerous_content(self, content: str) -> bool:
        """Check for dangerous content patterns."""
        
        for pattern in self.dangerous_patterns:
            if re.search(pattern, content, re.IGNORECASE):
                return True
        return False

πŸ” Access Control

Role-Based Access Control (RBAC)

class RBACManager:
    """Role-based access control for Aurelis."""
    
    def __init__(self):
        self.roles = {
            "viewer": {
                "permissions": ["models.view", "health.check"],
                "model_access": ["gpt-4o-mini"],
                "daily_token_limit": 1000,
                "features": ["basic_generation"]
            },
            "developer": {
                "permissions": ["models.view", "models.use", "analysis.run"],
                "model_access": ["gpt-4o-mini", "codestral-2501", "cohere-command-r"],
                "daily_token_limit": 10000,
                "features": ["generation", "analysis", "documentation"]
            },
            "senior_developer": {
                "permissions": ["models.view", "models.use", "analysis.run", "optimization.use"],
                "model_access": ["all"],
                "daily_token_limit": 25000,
                "features": ["generation", "analysis", "documentation", "optimization"]
            },
            "architect": {
                "permissions": ["models.view", "models.use", "analysis.run", "optimization.use", "admin.config"],
                "model_access": ["all"],
                "daily_token_limit": 50000,
                "features": ["all"]
            },
            "admin": {
                "permissions": ["*"],
                "model_access": ["all"],
                "daily_token_limit": 100000,
                "features": ["all"]
            }
        }
        
        self.user_roles = {}
        self.session_manager = SessionManager()
    
    def assign_role(self, user_id: str, role: str, assigned_by: str) -> bool:
        """Assign role to user."""
        
        if role not in self.roles:
            raise SecurityError(f"Invalid role: {role}")
        
        # Check if assigner has permission
        if not self._can_assign_role(assigned_by, role):
            raise SecurityError("Insufficient permissions to assign role")
        
        self.user_roles[user_id] = {
            "role": role,
            "assigned_by": assigned_by,
            "assigned_at": datetime.utcnow(),
            "active": True
        }
        
        # Audit log
        self._log_role_assignment(user_id, role, assigned_by)
        
        return True
    
    def check_permission(self, user_id: str, permission: str) -> bool:
        """Check if user has specific permission."""
        
        user_role_data = self.user_roles.get(user_id)
        if not user_role_data or not user_role_data["active"]:
            return False
        
        role = user_role_data["role"]
        role_permissions = self.roles[role]["permissions"]
        
        # Check for wildcard permission
        if "*" in role_permissions:
            return True
        
        # Check exact permission
        if permission in role_permissions:
            return True
        
        # Check permission hierarchy
        return self._check_permission_hierarchy(permission, role_permissions)
    
    def check_model_access(self, user_id: str, model_type: str) -> bool:
        """Check if user can access specific model."""
        
        user_role_data = self.user_roles.get(user_id)
        if not user_role_data or not user_role_data["active"]:
            return False
        
        role = user_role_data["role"]
        model_access = self.roles[role]["model_access"]
        
        return "all" in model_access or model_type in model_access
    
    def get_token_limit(self, user_id: str) -> int:
        """Get daily token limit for user."""
        
        user_role_data = self.user_roles.get(user_id)
        if not user_role_data or not user_role_data["active"]:
            return 0
        
        role = user_role_data["role"]
        return self.roles[role]["daily_token_limit"]

API Rate Limiting

class AdvancedRateLimiter:
    """Advanced rate limiting with multiple strategies."""
    
    def __init__(self):
        self.redis_client = redis.Redis()
        self.rate_limits = {
            "per_second": 10,
            "per_minute": 100,
            "per_hour": 1000,
            "per_day": 10000
        }
        
        self.burst_limits = {
            "burst_size": 20,
            "burst_window": 10  # seconds
        }
    
    async def check_rate_limit(
        self, 
        identifier: str, 
        endpoint: str,
        user_role: str = "developer"
    ) -> RateLimitResult:
        """Check rate limits with multiple time windows."""
        
        current_time = time.time()
        result = RateLimitResult()
        
        # Adjust limits based on user role
        limits = self._get_role_based_limits(user_role)
        
        # Check each time window
        for window, limit in limits.items():
            window_key = f"rate_limit:{identifier}:{endpoint}:{window}"
            window_seconds = self._get_window_seconds(window)
            
            # Get current count
            current_count = await self._get_window_count(window_key, window_seconds)
            
            if current_count >= limit:
                result.allowed = False
                result.limit_exceeded = window
                result.reset_time = current_time + window_seconds
                result.retry_after = window_seconds
                break
            
            # Update rate limit info
            result.limits[window] = {
                "limit": limit,
                "remaining": limit - current_count,
                "reset_time": current_time + window_seconds
            }
        
        # Check burst limit
        if result.allowed:
            burst_allowed = await self._check_burst_limit(identifier, endpoint)
            if not burst_allowed:
                result.allowed = False
                result.limit_exceeded = "burst"
                result.retry_after = self.burst_limits["burst_window"]
        
        # Record request if allowed
        if result.allowed:
            await self._record_request(identifier, endpoint)
        
        return result
    
    def _get_role_based_limits(self, role: str) -> Dict[str, int]:
        """Get rate limits based on user role."""
        
        role_multipliers = {
            "viewer": 0.1,
            "developer": 1.0,
            "senior_developer": 2.0,
            "architect": 5.0,
            "admin": 10.0
        }
        
        multiplier = role_multipliers.get(role, 1.0)
        
        return {
            window: int(limit * multiplier)
            for window, limit in self.rate_limits.items()
        }

πŸ“Š Audit & Compliance

Comprehensive Audit Logging

class ComplianceAuditLogger:
    """Compliance-focused audit logging system."""
    
    def __init__(self):
        self.audit_handlers = {
            "file": FileAuditHandler(),
            "syslog": SyslogAuditHandler(),
            "database": DatabaseAuditHandler(),
            "siem": SIEMAuditHandler()
        }
        
        self.compliance_modes = {
            "sox": SOXComplianceMode(),
            "hipaa": HIPAAComplianceMode(),
            "gdpr": GDPRComplianceMode(),
            "pci": PCIComplianceMode()
        }
    
    def log_security_event(
        self,
        event_type: str,
        severity: str,
        description: str,
        user_id: Optional[str] = None,
        source_ip: Optional[str] = None,
        context: Optional[Dict[str, Any]] = None
    ):
        """Log security event with compliance requirements."""
        
        # Create comprehensive audit record
        audit_record = {
            "timestamp": datetime.utcnow().isoformat(),
            "event_id": self._generate_event_id(),
            "event_type": event_type,
            "category": "security",
            "severity": severity,
            "description": description,
            "user_id": user_id,
            "source_ip": source_ip,
            "session_id": self._get_session_id(),
            "correlation_id": self._get_correlation_id(),
            "context": self._sanitize_context(context or {}),
            "system": "aurelis",
            "version": "2.0.0"
        }
        
        # Add compliance-specific fields
        for mode_name, mode in self.compliance_modes.items():
            if mode.is_enabled():
                audit_record.update(mode.get_compliance_fields(audit_record))
        
        # Send to all configured handlers
        for handler_name, handler in self.audit_handlers.items():
            if handler.is_enabled():
                try:
                    handler.log_event(audit_record)
                except Exception as e:
                    # Log handler failure but don't block operation
                    self._log_handler_failure(handler_name, str(e))
    
    def log_model_request(
        self,
        request_id: str,
        model_type: str,
        task_type: str,
        user_id: str,
        input_size: int,
        output_size: int,
        token_usage: Dict[str, int],
        success: bool,
        error_message: Optional[str] = None
    ):
        """Log model request with usage tracking."""
        
        audit_record = {
            "timestamp": datetime.utcnow().isoformat(),
            "event_id": self._generate_event_id(),
            "event_type": "model_request",
            "category": "usage",
            "request_id": request_id,
            "model_type": model_type,
            "task_type": task_type,
            "user_id": user_id,
            "input_size": input_size,
            "output_size": output_size,
            "token_usage": token_usage,
            "success": success,
            "error_message": error_message,
            "session_id": self._get_session_id(),
            "correlation_id": self._get_correlation_id()
        }
        
        # Calculate cost estimation
        audit_record["estimated_cost"] = self._calculate_cost(model_type, token_usage)
        
        # Add data classification
        audit_record["data_classification"] = self._classify_request_data(audit_record)
        
        # Send to audit handlers
        for handler in self.audit_handlers.values():
            if handler.is_enabled():
                handler.log_event(audit_record)

GDPR Compliance Implementation

class GDPRComplianceManager:
    """GDPR compliance management for personal data."""
    
    def __init__(self):
        self.data_processor = PersonalDataProcessor()
        self.consent_manager = ConsentManager()
        self.retention_manager = DataRetentionManager()
        
    def process_personal_data(
        self, 
        data: str, 
        user_id: str,
        processing_purpose: str,
        legal_basis: str
    ) -> ProcessingResult:
        """Process personal data with GDPR compliance."""
        
        # Check consent
        if legal_basis == "consent":
            consent = self.consent_manager.check_consent(user_id, processing_purpose)
            if not consent.is_valid():
                raise GDPRError("Valid consent not found")
        
        # Detect personal data
        personal_data_detected = self.data_processor.detect_personal_data(data)
        
        if personal_data_detected:
            # Apply data minimization
            minimized_data = self.data_processor.minimize_data(data, processing_purpose)
            
            # Apply pseudonymization if required
            if self._requires_pseudonymization(processing_purpose):
                processed_data = self.data_processor.pseudonymize(minimized_data, user_id)
            else:
                processed_data = minimized_data
            
            # Record processing activity
            self._record_processing_activity(
                user_id=user_id,
                purpose=processing_purpose,
                legal_basis=legal_basis,
                data_categories=personal_data_detected.categories,
                retention_period=self._get_retention_period(processing_purpose)
            )
            
            return ProcessingResult(
                data=processed_data,
                personal_data_detected=True,
                processing_recorded=True
            )
        
        return ProcessingResult(
            data=data,
            personal_data_detected=False,
            processing_recorded=False
        )
    
    def handle_data_subject_request(
        self, 
        request_type: str, 
        user_id: str,
        verification_token: str
    ) -> DataSubjectResponse:
        """Handle GDPR data subject requests."""
        
        # Verify request
        if not self._verify_data_subject_identity(user_id, verification_token):
            raise GDPRError("Identity verification failed")
        
        if request_type == "access":
            return self._handle_access_request(user_id)
        elif request_type == "rectification":
            return self._handle_rectification_request(user_id)
        elif request_type == "erasure":
            return self._handle_erasure_request(user_id)
        elif request_type == "portability":
            return self._handle_portability_request(user_id)
        elif request_type == "restriction":
            return self._handle_restriction_request(user_id)
        else:
            raise GDPRError(f"Unsupported request type: {request_type}")
    
    def _handle_erasure_request(self, user_id: str) -> DataSubjectResponse:
        """Handle right to erasure (right to be forgotten)."""
        
        # Check if erasure is permitted
        if not self._can_erase_data(user_id):
            return DataSubjectResponse(
                success=False,
                message="Erasure not permitted due to legal obligations"
            )
        
        # Perform erasure across all systems
        erasure_results = []
        
        # Erase from primary database
        db_result = self._erase_from_database(user_id)
        erasure_results.append(db_result)
        
        # Erase from cache systems
        cache_result = self._erase_from_cache(user_id)
        erasure_results.append(cache_result)
        
        # Erase from backup systems
        backup_result = self._erase_from_backups(user_id)
        erasure_results.append(backup_result)
        
        # Erase from audit logs (where permitted)
        audit_result = self._erase_from_audit_logs(user_id)
        erasure_results.append(audit_result)
        
        all_successful = all(result.success for result in erasure_results)
        
        return DataSubjectResponse(
            success=all_successful,
            message="Data erasure completed" if all_successful else "Partial erasure completed",
            details=erasure_results
        )

πŸ›‘οΈ Threat Mitigation

DDoS Protection

class DDoSProtectionManager:
    """DDoS protection and attack mitigation."""
    
    def __init__(self):
        self.request_tracker = RequestTracker()
        self.anomaly_detector = AnomalyDetector()
        self.response_generator = ThreatResponseGenerator()
        
    async def analyze_request(
        self, 
        request: aiohttp.web.Request
    ) -> ThreatAnalysisResult:
        """Analyze incoming request for DDoS patterns."""
        
        client_ip = self._get_client_ip(request)
        user_agent = request.headers.get("User-Agent", "")
        
        analysis = ThreatAnalysisResult()
        
        # Rate analysis
        request_rate = await self.request_tracker.get_request_rate(client_ip)
        if request_rate > self._get_rate_threshold():
            analysis.threat_level = "high"
            analysis.threat_type = "rate_based_ddos"
            analysis.confidence = 0.9
        
        # Pattern analysis
        pattern_anomaly = self.anomaly_detector.detect_request_pattern_anomaly(
            client_ip, request.method, request.path_qs
        )
        
        if pattern_anomaly.is_anomalous:
            analysis.threat_level = max(analysis.threat_level, "medium")
            analysis.threat_type = "pattern_based_attack"
            analysis.confidence = max(analysis.confidence, pattern_anomaly.confidence)
        
        # User agent analysis
        ua_analysis = self._analyze_user_agent(user_agent)
        if ua_analysis.is_suspicious:
            analysis.threat_level = max(analysis.threat_level, "low")
            analysis.threat_type = "automated_attack"
            analysis.confidence = max(analysis.confidence, ua_analysis.confidence)
        
        # Geographic analysis
        geo_analysis = await self._analyze_geographic_patterns(client_ip)
        if geo_analysis.is_suspicious:
            analysis.threat_level = max(analysis.threat_level, "medium")
            analysis.threat_type = "geographic_anomaly"
            analysis.confidence = max(analysis.confidence, geo_analysis.confidence)
        
        return analysis
    
    async def apply_protection_measures(
        self, 
        analysis: ThreatAnalysisResult,
        client_ip: str
    ) -> ProtectionResponse:
        """Apply appropriate protection measures based on threat analysis."""
        
        if analysis.threat_level == "high":
            # Immediate blocking
            await self._block_ip(client_ip, duration=3600)  # 1 hour
            return ProtectionResponse(
                action="block",
                duration=3600,
                reason=f"High threat detected: {analysis.threat_type}"
            )
        
        elif analysis.threat_level == "medium":
            # Rate limiting
            await self._apply_strict_rate_limit(client_ip)
            return ProtectionResponse(
                action="rate_limit",
                limit="1_per_second",
                reason=f"Medium threat detected: {analysis.threat_type}"
            )
        
        elif analysis.threat_level == "low":
            # Monitoring
            await self._increase_monitoring(client_ip)
            return ProtectionResponse(
                action="monitor",
                reason=f"Low threat detected: {analysis.threat_type}"
            )
        
        return ProtectionResponse(action="allow")

Input Validation and Sanitization

class InputSanitizer:
    """Comprehensive input validation and sanitization."""
    
    def __init__(self):
        self.sql_injection_patterns = [
            r'(\%27)|(\')|(\-\-)|(\%23)|(#)',
            r'((\%3D)|(=))[^\n]*((\%27)|(\')|(\-\-)|(\%3B)|(;))',
            r'\w*((\%27)|(\'))((\%6F)|o|(\%4F))((\%72)|r|(\%52))',
            r'((\%27)|(\'))union',
        ]
        
        self.xss_patterns = [
            r'<script\b[^<]*(?:(?!<\/script>)<[^<]*)*<\/script>',
            r'javascript:',
            r'on\w+\s*=',
            r'<iframe\b[^<]*(?:(?!<\/iframe>)<[^<]*)*<\/iframe>',
        ]
        
        self.command_injection_patterns = [
            r'[;&|`\$\(\)]',
            r'(\.\./)+',
            r'/etc/passwd',
            r'/bin/sh',
        ]
    
    def sanitize_model_request(self, request: ModelRequest) -> ModelRequest:
        """Sanitize model request input."""
        
        # Sanitize prompt
        sanitized_prompt = self._sanitize_text_input(request.prompt)
        
        # Sanitize system prompt
        sanitized_system_prompt = None
        if request.system_prompt:
            sanitized_system_prompt = self._sanitize_text_input(request.system_prompt)
        
        # Sanitize metadata
        sanitized_metadata = None
        if request.metadata:
            sanitized_metadata = self._sanitize_metadata(request.metadata)
        
        # Validate parameters
        self._validate_parameters(request)
        
        return ModelRequest(
            prompt=sanitized_prompt,
            model_type=request.model_type,
            task_type=request.task_type,
            system_prompt=sanitized_system_prompt,
            temperature=request.temperature,
            max_tokens=request.max_tokens,
            metadata=sanitized_metadata
        )
    
    def _sanitize_text_input(self, text: str) -> str:
        """Sanitize text input for security threats."""
        
        # Check for SQL injection
        for pattern in self.sql_injection_patterns:
            if re.search(pattern, text, re.IGNORECASE):
                raise SecurityError("Potential SQL injection detected")
        
        # Check for XSS
        for pattern in self.xss_patterns:
            if re.search(pattern, text, re.IGNORECASE):
                raise SecurityError("Potential XSS attack detected")
        
        # Check for command injection
        for pattern in self.command_injection_patterns:
            if re.search(pattern, text):
                raise SecurityError("Potential command injection detected")
        
        # HTML encoding for special characters
        sanitized = html.escape(text)
        
        # URL decoding to prevent double encoding attacks
        sanitized = urllib.parse.unquote(sanitized)
        
        # Remove null bytes
        sanitized = sanitized.replace('\x00', '')
        
        return sanitized

πŸ” Encryption & Key Management

Key Management System

class KeyManagementSystem:
    """Enterprise key management system."""
    
    def __init__(self):
        self.hsm_client = HSMClient()  # Hardware Security Module
        self.key_store = SecureKeyStore()
        self.key_rotation_manager = KeyRotationManager()
        
    def create_master_key(self, key_purpose: str) -> str:
        """Create new master key in HSM."""
        
        key_spec = {
            "key_usage": ["encrypt", "decrypt"],
            "key_size": 256,
            "algorithm": "AES",
            "purpose": key_purpose,
            "rotation_period": 90  # days
        }
        
        # Generate key in HSM
        key_id = self.hsm_client.generate_key(key_spec)
        
        # Store key metadata
        key_metadata = {
            "key_id": key_id,
            "purpose": key_purpose,
            "created_at": datetime.utcnow(),
            "algorithm": "AES-256",
            "status": "active",
            "rotation_schedule": self._calculate_rotation_schedule(90)
        }
        
        self.key_store.store_metadata(key_id, key_metadata)
        
        # Audit log
        self._log_key_creation(key_id, key_purpose)
        
        return key_id
    
    def rotate_key(self, old_key_id: str) -> str:
        """Rotate encryption key."""
        
        old_key_metadata = self.key_store.get_metadata(old_key_id)
        if not old_key_metadata:
            raise KeyManagementError("Key not found")
        
        # Create new key
        new_key_id = self.create_master_key(old_key_metadata["purpose"])
        
        # Re-encrypt data with new key
        self.key_rotation_manager.re_encrypt_data(old_key_id, new_key_id)
        
        # Mark old key as deprecated
        old_key_metadata["status"] = "deprecated"
        old_key_metadata["deprecated_at"] = datetime.utcnow()
        old_key_metadata["replaced_by"] = new_key_id
        
        self.key_store.update_metadata(old_key_id, old_key_metadata)
        
        # Schedule old key destruction
        self._schedule_key_destruction(old_key_id, days=30)
        
        # Audit log
        self._log_key_rotation(old_key_id, new_key_id)
        
        return new_key_id
    
    def encrypt_with_envelope(self, data: bytes, purpose: str) -> EnvelopeEncryptionResult:
        """Encrypt data using envelope encryption."""
        
        # Get or create master key
        master_key_id = self._get_master_key_for_purpose(purpose)
        
        # Generate data encryption key (DEK)
        dek = self._generate_dek()
        
        # Encrypt data with DEK
        encrypted_data = self._encrypt_data(data, dek)
        
        # Encrypt DEK with master key
        encrypted_dek = self.hsm_client.encrypt(dek, master_key_id)
        
        # Clear DEK from memory
        self._secure_clear(dek)
        
        return EnvelopeEncryptionResult(
            encrypted_data=encrypted_data,
            encrypted_dek=encrypted_dek,
            master_key_id=master_key_id,
            algorithm="AES-256-GCM"
        )

🚨 Incident Response

Security Incident Response

class SecurityIncidentResponseManager:
    """Automated security incident response system."""
    
    def __init__(self):
        self.alert_manager = AlertManager()
        self.response_playbooks = ResponsePlaybookManager()
        self.forensics_collector = ForensicsCollector()
        
    async def handle_security_incident(
        self, 
        incident_type: str,
        severity: str,
        context: Dict[str, Any]
    ) -> IncidentResponse:
        """Handle security incident with automated response."""
        
        # Create incident record
        incident_id = self._create_incident_record(incident_type, severity, context)
        
        # Get appropriate response playbook
        playbook = self.response_playbooks.get_playbook(incident_type, severity)
        
        response = IncidentResponse(incident_id=incident_id)
        
        try:
            # Execute immediate response steps
            immediate_actions = await self._execute_immediate_response(playbook, context)
            response.immediate_actions = immediate_actions
            
            # Collect forensic evidence
            if playbook.requires_forensics:
                forensic_data = await self.forensics_collector.collect_evidence(context)
                response.forensic_data = forensic_data
            
            # Execute containment measures
            containment_actions = await self._execute_containment(playbook, context)
            response.containment_actions = containment_actions
            
            # Notify stakeholders
            notifications = await self._send_notifications(incident_type, severity, context)
            response.notifications = notifications
            
            # Schedule follow-up actions
            follow_up_tasks = self._schedule_follow_up(playbook, incident_id)
            response.follow_up_tasks = follow_up_tasks
            
            response.status = "handled"
            
        except Exception as e:
            response.status = "failed"
            response.error = str(e)
            
            # Escalate on failure
            await self._escalate_incident(incident_id, str(e))
        
        # Update incident record
        self._update_incident_record(incident_id, response)
        
        return response
    
    async def _execute_immediate_response(
        self, 
        playbook: ResponsePlaybook,
        context: Dict[str, Any]
    ) -> List[ResponseAction]:
        """Execute immediate response actions."""
        
        actions = []
        
        for step in playbook.immediate_steps:
            try:
                if step.action_type == "block_ip":
                    await self._block_ip_address(step.parameters["ip"])
                    actions.append(ResponseAction("block_ip", "success", step.parameters))
                
                elif step.action_type == "disable_user":
                    await self._disable_user_account(step.parameters["user_id"])
                    actions.append(ResponseAction("disable_user", "success", step.parameters))
                
                elif step.action_type == "revoke_tokens":
                    await self._revoke_user_tokens(step.parameters["user_id"])
                    actions.append(ResponseAction("revoke_tokens", "success", step.parameters))
                
                elif step.action_type == "increase_monitoring":
                    await self._increase_monitoring_level(step.parameters)
                    actions.append(ResponseAction("increase_monitoring", "success", step.parameters))
                
            except Exception as e:
                actions.append(ResponseAction(step.action_type, "failed", {"error": str(e)}))
        
        return actions

πŸ“Š Security Monitoring

Real-time Security Monitoring

class SecurityMonitoringSystem:
    """Real-time security monitoring and alerting."""
    
    def __init__(self):
        self.event_processor = SecurityEventProcessor()
        self.anomaly_detector = SecurityAnomalyDetector()
        self.alert_manager = SecurityAlertManager()
        self.dashboard = SecurityDashboard()
        
    async def process_security_event(self, event: SecurityEvent):
        """Process security event for threats and anomalies."""
        
        # Enrich event with context
        enriched_event = await self._enrich_security_event(event)
        
        # Analyze for known threat patterns
        threat_analysis = await self.event_processor.analyze_threat_patterns(enriched_event)
        
        if threat_analysis.threat_detected:
            await self._handle_threat_detection(enriched_event, threat_analysis)
        
        # Analyze for anomalies
        anomaly_analysis = await self.anomaly_detector.detect_anomalies(enriched_event)
        
        if anomaly_analysis.anomaly_detected:
            await self._handle_anomaly_detection(enriched_event, anomaly_analysis)
        
        # Update security metrics
        await self._update_security_metrics(enriched_event)
        
        # Update dashboard
        await self.dashboard.update_real_time_data(enriched_event)
    
    async def _enrich_security_event(self, event: SecurityEvent) -> EnrichedSecurityEvent:
        """Enrich security event with additional context."""
        
        enriched = EnrichedSecurityEvent(event)
        
        # Add geographic information
        if event.source_ip:
            geo_info = await self._get_geographic_info(event.source_ip)
            enriched.geographic_info = geo_info
        
        # Add threat intelligence
        threat_intel = await self._get_threat_intelligence(event)
        enriched.threat_intelligence = threat_intel
        
        # Add user context
        if event.user_id:
            user_context = await self._get_user_context(event.user_id)
            enriched.user_context = user_context
        
        # Add historical context
        historical_context = await self._get_historical_context(event)
        enriched.historical_context = historical_context
        
        return enriched
    
    def generate_security_report(self, time_period: str) -> SecurityReport:
        """Generate comprehensive security report."""
        
        report = SecurityReport(period=time_period)
        
        # Security metrics
        report.metrics = self._calculate_security_metrics(time_period)
        
        # Threat summary
        report.threats = self._summarize_threats(time_period)
        
        # Vulnerability assessment
        report.vulnerabilities = self._assess_vulnerabilities()
        
        # Compliance status
        report.compliance = self._check_compliance_status()
        
        # Recommendations
        report.recommendations = self._generate_security_recommendations()
        
        return report

πŸ“ž Support & Resources

Security Documentation

Security Resources

Compliance Resources

Enterprise Security Support


Last Updated: December 2024
Version: 2.0.0
Security Classification: Internal Use
Author: Gamecooler19 (Lead Developer at Kanopus)

Aurelis - Where AI meets enterprise code development