Aurelis

Aurelis Best Practices Guide

Enterprise-grade best practices for optimal AI-powered development with GitHub Models

This comprehensive guide covers proven strategies, optimization techniques, and enterprise-ready patterns for maximizing the effectiveness of Aurelis in production environments.

πŸ“‹ Table of Contents

  1. Development Workflow
  2. Model Selection Strategy
  3. Performance Optimization
  4. Security & Compliance
  5. Cost Management
  6. Error Handling
  7. Code Quality
  8. Team Collaboration
  9. Production Deployment
  10. Monitoring & Analytics

πŸ”„ Development Workflow

1. Project Initialization

Standard Project Setup

# 1. Initialize Aurelis configuration
aurelis init

# 2. Verify GitHub token
aurelis auth status

# 3. Test model connectivity
aurelis models

# 4. Create project-specific configuration
cp .aurelis.yaml .aurelis.dev.yaml

Team Environment Setup

# Create shared configuration template
cat > .aurelis.template.yaml << EOF
github_token: "\${GITHUB_TOKEN}"
models:
  primary: "codestral-2501"
  fallback: "gpt-4o-mini"
analysis:
  max_file_size: "1MB"
  chunk_size: 3500
security:
  audit_logging: true
  secure_token_storage: true
EOF

# Team members copy and customize
cp .aurelis.template.yaml .aurelis.yaml

2. Daily Development Patterns

Morning Routine

# Check system health
aurelis health

# Review overnight logs (if applicable)
aurelis logs --since="yesterday"

# Update models availability
aurelis models --refresh

Code Generation Workflow

# 1. Analyze existing code
aurelis analyze src/

# 2. Generate new components
aurelis generate "Create user authentication service"

# 3. Review and refine
aurelis review --file=generated_code.py

# 4. Run tests
aurelis test --generate-missing

End-of-Day Cleanup

# Clear temporary caches
aurelis cache clear --temporary

# Export usage analytics
aurelis analytics export --format=json

# Backup configuration
cp .aurelis.yaml .aurelis.backup.yaml

🎯 Model Selection Strategy

1. Task-Based Model Selection

Automatic Task Detection

# Let Aurelis choose the optimal model
from aurelis.models import ModelRequest, TaskType

# Code generation - automatically uses Codestral-2501
request = ModelRequest(
    prompt="Create a REST API endpoint for user registration",
    task_type=TaskType.CODE_GENERATION
)

# Documentation - automatically uses Cohere Command-R
request = ModelRequest(
    prompt="Document this authentication service",
    task_type=TaskType.DOCUMENTATION
)

Manual Model Override

# Force specific model for specialized tasks
request = ModelRequest(
    prompt="Optimize this database query for PostgreSQL",
    model_type=ModelType.CODESTRAL_2501,  # Best for code optimization
    task_type=TaskType.CODE_OPTIMIZATION
)

2. Model Capability Matrix

Task Type Primary Model Fallback Use Case Performance
Code Generation Codestral-2501 GPT-4o Production code, APIs ⭐⭐⭐⭐⭐
Code Optimization Codestral-2501 Llama 70B Performance tuning ⭐⭐⭐⭐⭐
Documentation Command-R GPT-4o-mini Technical writing ⭐⭐⭐⭐
Complex Reasoning GPT-4o Llama 405B Architecture decisions ⭐⭐⭐⭐⭐
Quick Tasks GPT-4o-mini Mistral Nemo Simple operations ⭐⭐⭐⭐
Enterprise Apps Mistral Large GPT-4o Production systems ⭐⭐⭐⭐⭐

3. Context-Aware Selection

def select_model_for_context(file_size: int, complexity: str, urgency: str) -> ModelType:
    """Intelligent model selection based on context."""
    
    if urgency == "high" and file_size < 1000:
        return ModelType.GPT_4O_MINI  # Fast for urgent small tasks
    
    if complexity == "high":
        return ModelType.GPT_4O  # Complex reasoning capability
    
    if file_size > 10000:
        return ModelType.CODESTRAL_2501  # Best for large codebases
    
    return None  # Let Aurelis auto-select

πŸš€ Performance Optimization

1. Caching Strategies

Response Caching

# .aurelis.yaml
cache:
  enabled: true
  ttl: 3600  # 1 hour for most responses
  max_size: 1000
  strategy: "lru"
  
  # Task-specific TTL
  task_ttl:
    documentation: 7200  # 2 hours (docs change less)
    code_generation: 1800  # 30 minutes (code changes often)
    explanation: 3600  # 1 hour (explanations stable)

Smart Cache Keys

# Include relevant context in cache keys
request = ModelRequest(
    prompt="Optimize this function",
    task_type=TaskType.CODE_OPTIMIZATION,
    metadata={
        "language": "python",
        "framework": "fastapi",
        "version": "3.11",
        "performance_target": "high"
    }
)

2. Concurrent Processing

Batch Operations

from aurelis.models import get_model_orchestrator

async def process_multiple_files(file_paths: List[str]) -> List[str]:
    """Process multiple files concurrently."""
    orchestrator = get_model_orchestrator()
    
    # Create batch requests
    requests = [
        ModelRequest(
            prompt=f"Analyze and improve this code:\n{read_file(path)}",
            task_type=TaskType.CODE_OPTIMIZATION,
            metadata={"file_path": path}
        )
        for path in file_paths
    ]
    
    # Process in parallel with rate limiting
    responses = await orchestrator.batch_request(
        requests,
        max_concurrent=5  # Respect API limits
    )
    
    return [response.content for response in responses]

Rate Limiting Configuration

# .aurelis.yaml
processing:
  concurrent_requests: 5  # Conservative for stability
  request_interval: 0.1   # 100ms between requests
  max_retries: 3
  timeout: 60
  
  # Burst handling
  burst_limit: 10
  burst_window: 60  # seconds

3. Token Usage Optimization

Prompt Engineering

# βœ… Good: Concise and specific
request = ModelRequest(
    prompt="Create Python function: validate email, return boolean",
    max_tokens=200  # Limit response length
)

# ❌ Bad: Verbose and unfocused
request = ModelRequest(
    prompt="""I need help creating a function. This function should be written 
    in Python and it should validate email addresses. It should return True 
    if the email is valid and False if it's not valid. Please make sure it 
    handles edge cases..."""
)

Response Length Management

# Set appropriate token limits based on task
TASK_TOKEN_LIMITS = {
    TaskType.CODE_GENERATION: 2000,
    TaskType.DOCUMENTATION: 1500,
    TaskType.EXPLANATION: 1000,
    TaskType.CODE_OPTIMIZATION: 1500,
    TaskType.TESTING: 1000
}

request = ModelRequest(
    prompt=prompt,
    task_type=task_type,
    max_tokens=TASK_TOKEN_LIMITS.get(task_type, 1000)
)

πŸ”’ Security & Compliance

1. Token Management

Secure Token Storage

# Use environment variables (recommended)
export GITHUB_TOKEN="ghp_your_token_here"

# For enterprise: Use system keyring
aurelis config set security.token_storage keyring

Token Rotation

# Monthly token rotation script
#!/bin/bash
# rotate_token.sh

echo "Generating new GitHub token..."
# Manual step: Generate new token on GitHub

echo "Updating environment..."
export GITHUB_TOKEN_NEW="ghp_new_token_here"

echo "Testing new token..."
GITHUB_TOKEN=$GITHUB_TOKEN_NEW aurelis models

if [ $? -eq 0 ]; then
    echo "New token verified. Updating configuration..."
    export GITHUB_TOKEN=$GITHUB_TOKEN_NEW
    echo "Token rotation complete."
else
    echo "New token verification failed. Keeping old token."
fi

2. Audit Logging

Comprehensive Audit Trail

# .aurelis.yaml
security:
  audit_logging: true
  audit_level: "detailed"
  
logging:
  handlers:
    - type: "file"
      path: "logs/aurelis_audit.log"
      level: "INFO"
    - type: "syslog"
      facility: "local0"
      level: "WARNING"
  
  # What to log
  log_requests: true
  log_responses: false  # Never log response content
  log_tokens: true
  log_performance: true

GDPR/Compliance Configuration

# .aurelis.yaml
security:
  compliance_mode: true
  data_retention_days: 90
  anonymize_logs: true
  encryption_at_rest: true
  
  # Data classification
  classify_requests: true
  redact_sensitive: true
  audit_data_flow: true

3. Network Security

Secure Communication

# .aurelis.yaml
network:
  enforce_https: true
  verify_ssl: true
  timeout: 30
  
  # Proxy configuration (if required)
  proxy:
    http: "http://proxy.company.com:8080"
    https: "https://proxy.company.com:8080"
    no_proxy: "localhost,127.0.0.1"

πŸ’° Cost Management

1. Usage Monitoring

Token Usage Tracking

# Track usage per project/team
class UsageTracker:
    def __init__(self):
        self.usage_data = {}
    
    async def track_request(self, request: ModelRequest, response: ModelResponse):
        """Track token usage and costs."""
        project = request.metadata.get("project", "unknown")
        
        if project not in self.usage_data:
            self.usage_data[project] = {
                "requests": 0,
                "tokens": 0,
                "cost": 0.0
            }
        
        self.usage_data[project]["requests"] += 1
        self.usage_data[project]["tokens"] += response.token_usage.get("total_tokens", 0)
        self.usage_data[project]["cost"] += self.calculate_cost(response)
    
    def calculate_cost(self, response: ModelResponse) -> float:
        """Calculate estimated cost based on model and tokens."""
        MODEL_COSTS = {
            ModelType.GPT_4O: 0.00003,  # per token
            ModelType.GPT_4O_MINI: 0.000001,
            ModelType.CODESTRAL_2501: 0.000002,
            # Add other models...
        }
        
        cost_per_token = MODEL_COSTS.get(response.model_used, 0.000001)
        return response.token_usage.get("total_tokens", 0) * cost_per_token

Budget Alerts

# .aurelis.yaml
cost_management:
  daily_budget: 50.00  # USD
  weekly_budget: 300.00
  monthly_budget: 1000.00
  
  alerts:
    - threshold: 80  # percentage
      action: "warn"
    - threshold: 95
      action: "throttle"
    - threshold: 100
      action: "stop"

2. Cost Optimization Strategies

Smart Model Selection

# Use cheaper models for appropriate tasks
COST_OPTIMIZED_ROUTING = {
    "simple_docs": ModelType.GPT_4O_MINI,
    "quick_fixes": ModelType.MISTRAL_NEMO,
    "complex_arch": ModelType.GPT_4O,  # Worth the cost
    "bulk_generation": ModelType.CODESTRAL_2501
}

def select_cost_effective_model(task_complexity: str) -> ModelType:
    """Select model based on cost-effectiveness."""
    return COST_OPTIMIZED_ROUTING.get(task_complexity, ModelType.GPT_4O_MINI)

Caching for Cost Reduction

# Aggressive caching for repeated patterns
request = ModelRequest(
    prompt="Standard CRUD operations for User entity",
    task_type=TaskType.CODE_GENERATION,
    metadata={
        "cache_duration": 24 * 3600,  # 24 hours
        "cache_tags": ["crud", "user", "standard"]
    }
)

πŸ›‘οΈ Error Handling

1. Graceful Degradation

Fallback Strategies

async def robust_code_generation(prompt: str) -> str:
    """Generate code with multiple fallback strategies."""
    orchestrator = get_model_orchestrator()
    
    # Strategy 1: Primary model
    try:
        request = ModelRequest(
            prompt=prompt,
            task_type=TaskType.CODE_GENERATION,
            model_type=ModelType.CODESTRAL_2501
        )
        response = await orchestrator.send_request(request)
        return response.content
        
    except ModelError as e:
        logger.warning(f"Primary model failed: {e}")
        
        # Strategy 2: Fallback model
        try:
            request.model_type = ModelType.GPT_4O
            response = await orchestrator.send_request(request)
            return response.content
            
        except ModelError as e:
            logger.error(f"Fallback model failed: {e}")
            
            # Strategy 3: Simplified prompt
            simplified_prompt = f"Generate basic {prompt.split()[-1]} function"
            request.prompt = simplified_prompt
            request.model_type = ModelType.GPT_4O_MINI
            
            try:
                response = await orchestrator.send_request(request)
                return f"# Simplified version due to errors:\n{response.content}"
                
            except Exception as e:
                logger.error(f"All strategies failed: {e}")
                return f"# Error: Unable to generate code for: {prompt}"

2. Circuit Breaker Pattern

class ModelCircuitBreaker:
    def __init__(self, failure_threshold: int = 5, timeout: int = 60):
        self.failure_threshold = failure_threshold
        self.timeout = timeout
        self.failure_count = {}
        self.last_failure_time = {}
        self.state = {}  # "closed", "open", "half_open"
    
    async def call_with_breaker(self, model_type: ModelType, request: ModelRequest):
        """Call model with circuit breaker protection."""
        
        if self.is_open(model_type):
            if self.should_attempt_reset(model_type):
                self.state[model_type] = "half_open"
            else:
                raise ModelError(f"Circuit breaker open for {model_type}")
        
        try:
            response = await self.orchestrator.send_request(request)
            self.on_success(model_type)
            return response
            
        except ModelError as e:
            self.on_failure(model_type)
            raise e
    
    def on_success(self, model_type: ModelType):
        """Reset circuit breaker on successful call."""
        self.failure_count[model_type] = 0
        self.state[model_type] = "closed"
    
    def on_failure(self, model_type: ModelType):
        """Record failure and potentially open circuit."""
        self.failure_count[model_type] = self.failure_count.get(model_type, 0) + 1
        self.last_failure_time[model_type] = time.time()
        
        if self.failure_count[model_type] >= self.failure_threshold:
            self.state[model_type] = "open"

3. Retry Logic

Exponential Backoff

import asyncio
from typing import TypeVar, Callable, Any

T = TypeVar('T')

async def retry_with_backoff(
    func: Callable[[], T],
    max_retries: int = 3,
    base_delay: float = 1.0,
    max_delay: float = 60.0,
    exponential_base: float = 2.0
) -> T:
    """Retry function with exponential backoff."""
    
    for attempt in range(max_retries + 1):
        try:
            return await func()
            
        except Exception as e:
            if attempt == max_retries:
                raise e
            
            delay = min(base_delay * (exponential_base ** attempt), max_delay)
            
            logger.warning(
                f"Attempt {attempt + 1} failed: {e}. "
                f"Retrying in {delay:.1f} seconds..."
            )
            
            await asyncio.sleep(delay)
    
    raise RuntimeError("Maximum retries exceeded")

🎨 Code Quality

1. Prompt Engineering

Effective Prompting Patterns

# βœ… Pattern 1: Specific requirements
prompt = """
Create a Python function with these exact requirements:
- Function name: validate_user_input
- Parameters: user_data (dict), schema (dict)
- Returns: tuple (is_valid: bool, errors: list)
- Include type hints and docstring
- Handle missing keys and type mismatches
"""

# βœ… Pattern 2: Context-aware
prompt = f"""
Optimize this {language} function for {framework}:

{existing_code}

Focus on:
- Performance improvements
- Memory usage reduction
- {specific_optimization_target}
"""

# βœ… Pattern 3: Incremental improvement
prompt = f"""
Current code:
{current_implementation}

Failing tests:
{test_failures}

Fix the failing tests while maintaining existing functionality.
"""

Anti-Patterns to Avoid

# ❌ Vague requests
prompt = "Make this code better"

# ❌ Too many requirements
prompt = """Create a function that handles users and authentication and 
authorization and logging and error handling and caching and..."""

# ❌ No context
prompt = "Fix this bug" # Without showing the bug or code

2. Code Review Integration

Automated Review Process

async def automated_code_review(file_path: str) -> Dict[str, Any]:
    """Perform automated code review using Aurelis."""
    
    code = read_file(file_path)
    language = detect_language(file_path)
    
    # Security review
    security_request = ModelRequest(
        prompt=f"""
        Security review for {language} code:
        
        {code}
        
        Check for:
        - SQL injection vulnerabilities
        - Cross-site scripting (XSS)
        - Authentication bypasses
        - Data validation issues
        - Sensitive data exposure
        """,
        task_type=TaskType.ANALYSIS,
        model_type=ModelType.GPT_4O  # Use best model for security
    )
    
    # Performance review
    performance_request = ModelRequest(
        prompt=f"""
        Performance analysis for {language} code:
        
        {code}
        
        Identify:
        - Algorithmic inefficiencies
        - Memory usage issues
        - Database query optimization
        - Caching opportunities
        """,
        task_type=TaskType.CODE_OPTIMIZATION,
        model_type=ModelType.CODESTRAL_2501
    )
    
    # Code style review
    style_request = ModelRequest(
        prompt=f"""
        Code style review for {language}:
        
        {code}
        
        Check against:
        - PEP 8 (Python) / language standards
        - Naming conventions
        - Documentation completeness
        - Code organization
        """,
        task_type=TaskType.ANALYSIS,
        model_type=ModelType.COHERE_COMMAND_R
    )
    
    # Execute reviews in parallel
    responses = await asyncio.gather(
        orchestrator.send_request(security_request),
        orchestrator.send_request(performance_request),
        orchestrator.send_request(style_request)
    )
    
    return {
        "security": responses[0].content,
        "performance": responses[1].content,
        "style": responses[2].content,
        "overall_score": calculate_score(responses)
    }

3. Testing Integration

Test Generation

async def generate_comprehensive_tests(function_code: str) -> str:
    """Generate comprehensive test suite."""
    
    request = ModelRequest(
        prompt=f"""
        Generate comprehensive tests for this function:
        
        {function_code}
        
        Include:
        - Unit tests for normal cases
        - Edge case tests
        - Error condition tests
        - Performance tests (if applicable)
        - Integration tests (if applicable)
        
        Use pytest framework with appropriate fixtures.
        """,
        task_type=TaskType.TESTING,
        model_type=ModelType.CODESTRAL_2501,
        temperature=0.1  # Deterministic for tests
    )
    
    response = await orchestrator.send_request(request)
    return response.content

πŸ‘₯ Team Collaboration

1. Shared Configuration

Team Configuration Management

# .aurelis.team.yaml
team:
  name: "Backend Development Team"
  lead: "[email protected]"
  
models:
  primary: "codestral-2501"
  fallback: "gpt-4o-mini"
  
standards:
  code_style: "pep8"
  test_framework: "pytest"
  documentation_style: "google"
  
quotas:
  daily_tokens: 50000
  monthly_budget: 500.00
  
workflows:
  code_review: true
  auto_documentation: true
  test_generation: true

Role-Based Access

# .aurelis.yaml
access_control:
  roles:
    developer:
      models: ["codestral-2501", "gpt-4o-mini"]
      daily_limit: 10000
      features: ["generation", "analysis"]
      
    senior_developer:
      models: ["all"]
      daily_limit: 25000
      features: ["generation", "analysis", "optimization"]
      
    architect:
      models: ["all"]
      daily_limit: 50000
      features: ["all"]

2. Knowledge Sharing

Custom Prompt Library

# prompts/team_prompts.py
TEAM_PROMPTS = {
    "api_endpoint": """
    Create a {framework} API endpoint with:
    - Path: {path}
    - Method: {method}
    - Authentication: JWT
    - Validation: Pydantic models
    - Error handling: Custom exceptions
    - Logging: Structured logging
    - Tests: Unit and integration
    """,
    
    "database_model": """
    Create a {orm} model for {entity}:
    - Table name: {table_name}
    - Fields: {fields}
    - Relationships: {relationships}
    - Constraints: {constraints}
    - Indexes: {indexes}
    - Migration script included
    """,
    
    "documentation": """
    Document this {component_type}:
    
    {code}
    
    Follow our documentation standards:
    - Clear purpose statement
    - Parameter descriptions with types
    - Usage examples
    - Common pitfalls
    - Related components
    """
}

def get_team_prompt(prompt_type: str, **kwargs) -> str:
    """Get standardized team prompt."""
    template = TEAM_PROMPTS.get(prompt_type)
    if not template:
        raise ValueError(f"Unknown prompt type: {prompt_type}")
    
    return template.format(**kwargs)

3. Workflow Integration

Git Hooks Integration

#!/bin/bash
# .git/hooks/pre-commit

echo "Running Aurelis code review..."

# Get changed files
changed_files=$(git diff --cached --name-only --diff-filter=ACM | grep '\.py$')

if [ -n "$changed_files" ]; then
    for file in $changed_files; do
        echo "Reviewing $file..."
        
        # Quick security check
        aurelis analyze --security --file="$file"
        
        if [ $? -ne 0 ]; then
            echo "Security issues found in $file. Commit blocked."
            exit 1
        fi
    done
fi

echo "Code review passed."

CI/CD Integration

# .github/workflows/aurelis-review.yml
name: Aurelis Code Review

on:
  pull_request:
    types: [opened, synchronize]

jobs:
  aurelis-review:
    runs-on: ubuntu-latest
    
    steps:
    - uses: actions/checkout@v3
    
    - name: Setup Aurelis
      run: |
        pip install aurelis-cli
        export GITHUB_TOKEN=$
    
    - name: Run Aurelis Review
      run: |
        aurelis review \
          --files=$(git diff --name-only origin/main...HEAD) \
          --format=github-comment \
          --output=review_results.md
    
    - name: Post Review Comment
      uses: actions/github-script@v6
      with:
        script: |
          const fs = require('fs');
          const review = fs.readFileSync('review_results.md', 'utf8');
          
          github.rest.issues.createComment({
            issue_number: context.issue.number,
            owner: context.repo.owner,
            repo: context.repo.repo,
            body: review
          });

πŸš€ Production Deployment

1. Environment Configuration

Production Settings

# .aurelis.production.yaml
environment: "production"

security:
  token_storage: "keyring"
  audit_logging: true
  compliance_mode: true
  encryption_at_rest: true

processing:
  concurrent_requests: 10
  timeout: 45
  max_retries: 5
  circuit_breaker: true

monitoring:
  metrics_enabled: true
  health_checks: true
  performance_tracking: true
  
logging:
  level: "INFO"
  structured: true
  correlation_ids: true
  
cache:
  enabled: true
  backend: "redis"
  ttl: 1800
  max_size: 10000

Health Checks

from fastapi import FastAPI
from aurelis.models import get_model_orchestrator

app = FastAPI()

@app.get("/health")
async def health_check():
    """Comprehensive health check endpoint."""
    orchestrator = get_model_orchestrator()
    
    health_status = orchestrator.health_check()
    
    # Additional checks
    health_status.update({
        "cache": check_cache_health(),
        "token": check_token_validity(),
        "network": check_network_connectivity()
    })
    
    overall_healthy = all(
        status.get("status") == "healthy" 
        for status in health_status.values()
        if isinstance(status, dict)
    )
    
    return {
        "status": "healthy" if overall_healthy else "unhealthy",
        "timestamp": datetime.now().isoformat(),
        "details": health_status
    }

@app.get("/metrics")
async def metrics():
    """Prometheus-compatible metrics endpoint."""
    orchestrator = get_model_orchestrator()
    stats = orchestrator.get_model_stats()
    
    # Convert to Prometheus format
    metrics = []
    metrics.append(f"aurelis_requests_total {stats.get('total_requests', 0)}")
    metrics.append(f"aurelis_tokens_total {stats.get('total_tokens', 0)}")
    metrics.append(f"aurelis_errors_total {stats.get('total_errors', 0)}")
      return "\n".join(metrics)

2. Performance Optimization

Local Performance

For single-instance usage, focus on:

πŸ“Š Monitoring & Analytics

1. Performance Metrics

Key Performance Indicators

class AurelisMetrics:
    def __init__(self):
        self.request_count = Counter()
        self.response_time = Histogram()
        self.token_usage = Counter()
        self.error_count = Counter()
        self.cache_hits = Counter()
    
    def record_request(self, response: ModelResponse):
        """Record metrics for a model request."""
        
        # Request counting
        self.request_count.labels(
            model=response.model_used,
            task_type=response.task_type,
            cached=response.cached
        ).inc()
        
        # Response time
        self.response_time.labels(
            model=response.model_used
        ).observe(response.processing_time)
        
        # Token usage
        self.token_usage.labels(
            model=response.model_used,
            type="total"
        ).inc(response.token_usage.get("total_tokens", 0))
        
        # Cache performance
        if response.cached:
            self.cache_hits.labels(
                model=response.model_used
            ).inc()
    
    def record_error(self, error: Exception, model_type: str):
        """Record error metrics."""
        self.error_count.labels(
            model=model_type,
            error_type=type(error).__name__
        ).inc()

2. Usage Analytics

Analytics Dashboard

class AnalyticsDashboard:
    def __init__(self):
        self.db = get_analytics_db()
    
    def get_usage_summary(self, period: str = "7d") -> Dict[str, Any]:
        """Get usage summary for specified period."""
        
        return {
            "total_requests": self.get_request_count(period),
            "total_tokens": self.get_token_usage(period),
            "average_response_time": self.get_avg_response_time(period),
            "error_rate": self.get_error_rate(period),
            "cache_hit_rate": self.get_cache_hit_rate(period),
            "cost_estimate": self.estimate_costs(period),
            "top_models": self.get_top_models(period),
            "peak_usage_hours": self.get_peak_hours(period)
        }
    
    def get_model_performance(self) -> Dict[str, Any]:
        """Get performance metrics by model."""
        
        models = {}
        for model_type in ModelType:
            models[model_type.value] = {
                "avg_response_time": self.get_model_avg_time(model_type),
                "success_rate": self.get_model_success_rate(model_type),
                "token_efficiency": self.get_token_efficiency(model_type),
                "cost_per_request": self.get_cost_per_request(model_type)
            }
        
        return models
    
    def generate_report(self, format: str = "html") -> str:
        """Generate comprehensive analytics report."""
        
        data = {
            "summary": self.get_usage_summary(),
            "model_performance": self.get_model_performance(),
            "trends": self.get_usage_trends(),
            "recommendations": self.get_optimization_recommendations()
        }
        
        if format == "html":
            return self.render_html_report(data)
        elif format == "pdf":
            return self.render_pdf_report(data)
        else:
            return json.dumps(data, indent=2)

3. Alerting

Alert Configuration

# .aurelis.yaml
alerting:
  enabled: true
  
  thresholds:
    error_rate: 5  # percentage
    response_time: 30  # seconds
    token_usage: 100000  # daily
    cost: 100  # daily USD
  
  channels:
    - type: "email"
      recipients: ["[email protected]"]
      events: ["error_spike", "cost_threshold"]
      
    - type: "slack"
      webhook: "${SLACK_WEBHOOK_URL}"
      events: ["all"]
      
    - type: "pagerduty"
      service_key: "${PAGERDUTY_KEY}"
      events: ["critical"]

Alert Handlers

class AlertManager:
    def __init__(self):
        self.config = get_config()
        self.handlers = self._setup_handlers()
    
    async def check_thresholds(self):
        """Check all monitoring thresholds."""
        
        current_metrics = self.get_current_metrics()
        
        # Error rate check
        if current_metrics["error_rate"] > self.config.alerting.thresholds.error_rate:
            await self.send_alert(
                level="warning",
                message=f"Error rate {current_metrics['error_rate']}% exceeds threshold",
                metrics=current_metrics
            )
        
        # Response time check
        if current_metrics["avg_response_time"] > self.config.alerting.thresholds.response_time:
            await self.send_alert(
                level="warning",
                message=f"Response time {current_metrics['avg_response_time']}s exceeds threshold",
                metrics=current_metrics
            )
        
        # Cost check
        if current_metrics["daily_cost"] > self.config.alerting.thresholds.cost:
            await self.send_alert(
                level="critical",
                message=f"Daily cost ${current_metrics['daily_cost']} exceeds budget",
                metrics=current_metrics
            )
    
    async def send_alert(self, level: str, message: str, metrics: Dict[str, Any]):
        """Send alert through configured channels."""
        
        alert_data = {
            "timestamp": datetime.now().isoformat(),
            "level": level,
            "message": message,
            "metrics": metrics,
            "service": "aurelis"
        }
        
        for handler in self.handlers:
            if handler.should_handle(level):
                await handler.send(alert_data)

πŸ“š Advanced Patterns

1. Plugin Architecture

Custom Model Providers

from aurelis.models import ModelProvider

class CustomModelProvider(ModelProvider):
    """Custom model provider for specialized use cases."""
    
    def __init__(self, provider_name: str, endpoint: str):
        self.provider_name = provider_name
        self.endpoint = endpoint
        super().__init__()
    
    async def send_request(self, request: ModelRequest) -> ModelResponse:
        """Send request to custom model provider."""
        
        # Custom implementation
        response = await self.call_custom_api(request)
        
        return ModelResponse(
            model_type=request.model_type,
            task_type=request.task_type,
            content=response.content,
            confidence=response.confidence,
            token_usage=response.token_usage,
            processing_time=response.processing_time
        )
    
    def get_supported_models(self) -> List[ModelType]:
        """Get list of supported models."""
        return [ModelType.CUSTOM_MODEL]

# Register custom provider
from aurelis.core.registry import register_provider
register_provider("custom", CustomModelProvider)

2. Advanced Caching

Multi-Level Caching

class MultiLevelCache:
    def __init__(self):
        self.memory_cache = LRUCache(maxsize=1000)
        self.redis_cache = redis.Redis()
        self.persistent_cache = get_database()
    
    async def get(self, key: str) -> Optional[ModelResponse]:
        """Get from cache with fallback layers."""
        
        # Level 1: Memory cache (fastest)
        response = self.memory_cache.get(key)
        if response:
            return response
        
        # Level 2: Redis cache (fast)
        cached_data = await self.redis_cache.get(key)
        if cached_data:
            response = ModelResponse.from_json(cached_data)
            self.memory_cache[key] = response
            return response
        
        # Level 3: Persistent cache (slower but durable)
        response = await self.persistent_cache.get_cached_response(key)
        if response:
            await self.redis_cache.setex(key, 3600, response.to_json())
            self.memory_cache[key] = response
            return response
        
        return None
    
    async def set(self, key: str, response: ModelResponse, ttl: int = 3600):
        """Set cache at all levels."""
        
        # Memory cache
        self.memory_cache[key] = response
        
        # Redis cache
        await self.redis_cache.setex(key, ttl, response.to_json())
        
        # Persistent cache (for long-term storage)
        if ttl > 3600:  # Only persist long-lived cache entries
            await self.persistent_cache.store_cached_response(key, response, ttl)

3. Custom Workflows

Workflow Engine

class WorkflowEngine:
    def __init__(self):
        self.orchestrator = get_model_orchestrator()
        self.workflows = {}
    
    def register_workflow(self, name: str, workflow: 'Workflow'):
        """Register a custom workflow."""
        self.workflows[name] = workflow
    
    async def execute_workflow(self, name: str, input_data: Dict[str, Any]) -> Dict[str, Any]:
        """Execute a registered workflow."""
        
        workflow = self.workflows.get(name)
        if not workflow:
            raise ValueError(f"Unknown workflow: {name}")
        
        return await workflow.execute(input_data, self.orchestrator)

class CodeReviewWorkflow:
    """Complete code review workflow."""
    
    async def execute(self, input_data: Dict[str, Any], orchestrator) -> Dict[str, Any]:
        code = input_data["code"]
        language = input_data.get("language", "python")
        
        # Step 1: Security analysis
        security_analysis = await self._analyze_security(code, language, orchestrator)
        
        # Step 2: Performance analysis
        performance_analysis = await self._analyze_performance(code, language, orchestrator)
        
        # Step 3: Style analysis
        style_analysis = await self._analyze_style(code, language, orchestrator)
        
        # Step 4: Generate improvement suggestions
        improvements = await self._generate_improvements(
            code, security_analysis, performance_analysis, style_analysis, orchestrator
        )
        
        # Step 5: Generate test cases
        test_cases = await self._generate_tests(code, language, orchestrator)
        
        return {
            "security": security_analysis,
            "performance": performance_analysis,
            "style": style_analysis,
            "improvements": improvements,
            "test_cases": test_cases,
            "overall_score": self._calculate_score(security_analysis, performance_analysis, style_analysis)
        }

# Register workflow
workflow_engine = WorkflowEngine()
workflow_engine.register_workflow("code_review", CodeReviewWorkflow())

πŸ“ž Support & Resources

Documentation

Community

Enterprise Support


Last Updated: December 2024
Version: 2.0.0
Author: Gamecooler19 (Lead Developer at Kanopus)

Aurelis - Where AI meets enterprise code development